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This paper reviews previous studies (Refs. 1 and 2) of the algebraic structure of con-
volutional codes and extends those studies to apply to sequential syndrome decoding.
These concepts are then used to realize by example actual sequentigl decoding, using the

stack algorithm.

l. Introduction

In Ref. 1, a general technique was developed for finding all
solutions of the syndrome equation of noncatastrophic (n, k)
convolution codes (CCs). The solutions of the syndrome equa-
tion constitute the set of all possible error sequences that
- might have been made in transmission. In general, these solu-
tions of the syndrome equation are either graphed on a error
tree or on its more compact equivalent, an error trellis. In
Ref. 2, the identity of the mathematical concept of Vinck,
de Paepe, and Schalkwijk (VPS) (Ref. 3) is first generalized to
all basic encoders and proved rigorously by the general tech-
nique developed in Ref. 1. This identity represents a canonical
solution of the syndrome equation for all (n, k) convolutional
codes with a basic encoder.

In this paper, the Fano metric for use in sequential decod-
ing is modified so that it can be utilized to sequentially find
the minimum weight error sequence in the set (or coset) of
all solutions of the syndrome equation. To accomplish this,
the stack algorithm is used primarily to expose the concepts of
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sequential syndrome decoding, Sequential syndrome decoding
of CCs is illustrated in detail by an example, However, most of
the present development applies as well to a Fano-like sequen-
tial syndrome decoding algorithm.

IIl. Fundamentals of Syndrome Decoding of
Convolutional Codes

This section provides a brief review of the concepts of a CC
needed for the systematic construction of an error tree or
trellis of a sequential syndrome decoding. First, the input to
an (n, k) CC can be represented as the D-transform

x(D) = 3 xD 1
=0

of the sequence x,, X, , X,, - - *, of k-vectors of form X; = [xlj,
Xa5, s Xg;], where x,, belong to a Galois field, F, here
restricted to the binary field of two elements. Similarly, the
ouptut of an (n, k) CC is the D-transform




y@).= )y @)
j=0
where Yo, V15 V2, * ' constitutes a sequence of n-vectors

y; = [y1/, Yapm o Ynj] ,with y,, e F.

The input and output of a convolutional code are linearly
related in terms of the operations of the symbol field, F. As a
consequence, ¥(D) in Eq. (2) is related, in general, to x(D) in
Eq. (1) by

y(D) = x(D)G(D) €)

where G(D) is a k X n matrix of formal power series in D over
the symbol field, F.

If the elements g,(D) of k X n matrix

g,(D), 8, ,(D)

GD) =| . . “

g, D), g, D)

are restricted to be polynomials, G(D) is the generating matrix
of some (n, k) convolutional code. The maximum degree, 1, of
the polynomial elements of G(D) is called the memory delay

of the code. Usually, the constraint length of the code is -

definedtobe K =n+1.

The polynomial elements of the generating matrix G(D) -

belong to the ring, F[D], of all polynomials in D over the
finite field, F.

G(D) = A(D)[T,, 0] B(D) )

To avoid what is called “catastrophic error propagation,”
Massey and Sain (Ref. 4) proved that the right inverse G~1 of
the generating matrix G must be feedback-free. Forney
(Ref. 5) defined a basic encoder to be a CC that has a
feedback-free inverse G™! of generating matrix G. Also,
Forney in Ref. 5 (see also Ref. 1) showed that only basic
encoders with Smith normal form

will be considered. Where A = A(D)is a k X k matrix with ele-
ments in F{D], B = B(D) is an n X n matrix with elements in

F[D],and I, is a k X k diagonal matrix.

After transmission over a possible noisy channel, let

z(D) = y(D) +e(D) Q)

be the D-transform of the received coded message, where e(D)
is the D:transform of the error sequence. A parity-check
matrix, H = H(D), of the generation matrix, G(D), is any full-
rank (n - k) X # matrix with elements in F[D] such that

G(DHT(D) = 0 8)

To find the parity-check matrix, H, associated with G, the
method of Forney (Ref. 5) is used. To accomplish this, parti-
tion matrix B of the Smith normal form in Eq. (6) and its
inverse, B~!, in the following manner. Let

G = [B,,B,]" ©9)

where T denotes matrix transpose; B; and B, are the first ¥
rows and the last (n - k) rows of B, respectively.

Similarly, let
B! = [B,B,] (10)

where B, and B, are the first k columns and the last (n - k)

columns of B!, respectively. Then, since BB~ =1, , the fol-

lowing identities hold:
BB =1, BB =0

11

I

0, BB, =1 ,

i
]

B21

In terms of the above matrix partitions, the Forney parity-
check matrix is defined by

= T

H = B, (12)
where “T” denotes matrix transpose. That H, defined by
Eq. (12), is a parity-check matrix satisfying Eq. (8) and is
verified by substituting for G its Smith normal form and by

partitioning B as given in Eq. (9) (see Ref. 1 for more details).

The syndrome s(D) of the received sequence, corresponding
to z(D) in Eq. (7), is computed by

s = s(D) = z(D)HT (D) (13)

where H(D) is the parity-check matrix in Eq. (12). A substitu-
tion of z(D), which appears in Eq. (7), into Eq. (13) yields

s(D) = e(D)H’(D) (14)

as the syndrome, computed by Eq. (13), but now in terms
of only e(D), the error sequence. This result shows that the
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syndrome s(D) is completely independent of the transmitted
code sequence, y(D).

Syndrome decoding of convolutional codes depends first, as
it does of block codes, on solving the syndrome equation,
Eq. (14), for all possible error sequence e(D) e F[D] that
might have given rise to the syndrome s(D) as computed by
Eq. (17). Next, that error sequence, e(D), is chosen from that
set of solutions of Eq. (14) that maximizes the likelihood of
being close to the actual error sequence.

The general solution of the syndrome equation, Eq. (14), is
given in Eq. (23) of Ref. 2. That is,

e = tG+5B, (15)
where B = (H"))T, G is the k X n generating matrix, B, is
computed by Eq. (9), s is the (n - k) component computed by
Eq. (13), and ¢ is an arbitrary & vector with elements in 7[D].

In the next section, the solution e(D) of the syndrome
equation, Eq. (14), is shown to graph on a rooted tree ot

trellis as a function of all possible binary sequences corre- °

sponding to the arbitrary D-transform #(D). Such an error tree
or trellis is used then to illustrate the sequential syndrome
decoding algorithm for CCs using a modified Fano metric, uz,
developed in Appendix A.

Now let € = 2(D) be the D-transform of the error sequence
found by maximizing ug over all subsequences of the error
trellis generated by the particular sequential syndrome decod-
ing algorithm developed in Section IIIL Also, let T= ?(D) be the
D-transform of the binary sequence path in the error trellis
along which sequence € was found. By Eq. (23), Fand € are
related, in fact, by

¢ =7G+sB, . (16)

Next, note, by the Smith normal form in Eq. (6) of a gen-
erating matrix G, that

I
G! =p! [ k] Al (17
0

is the right inverse of G. Hence, multiplying both sides of
Eq. (16) yields, by Eq. (11), the identity,

Ay
eG™!

7 . A ent!
r+s B2 G

~ I " .
7+sB,[B,,B,]| "|A
0
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~

= 7+s[0,1 _ A =7 (18)

k)

between € and 7,

The sequential syndrome decoding algorithm produces the
D-transform € of the most likely estimate of the actual error
sequence. Hence, by Eq. (7); a subtraction of € from z yields
an estimate, ¥, of the actual transmitted sequence y. But, ¥, in
turn, is generated by an estimated message sequence X, That s,

y=3XG=z+e (19)

Multiplying both sides of the latter equality by G™! produces,
by Eq. (18),

% =261 +8G =G +7 (20)

This identity shows that 7, computed by the sequential syn-
drome algorithm, is a correction factor to the standard tech-
nique for recovering the message from its coded form in the
noiseless case.

Ill. Sequential Syndrome Decoding with a
Stack Algorithm

In this section, the details of a sequential syndrome decod-
ing algorithm are developed by an example of the basic
encoder. This encoder is the same as the (3, 1) CC described
(Ref. 6, Chapter 12) in the development of the standard stack
algorithm for the sequential decoding of convolutional codes.
For expository and comparative purposes, some of the param-
eters in the example (Ref, 6, Chapter 12) are used also in this

paper.

To illustrate a sequential syndrome decoding with a stack
algorithm, consider the generating matrix

G(D) = [1+D,1+D? 1+D+D?] 2D

of a (3, 1) CC. Using elementary column transformations, the
Smith normal form of G in Eq. (21) is

G = [100]B(D) (222)
where
1+D, 1+D?, 1+D+D?
BD)= | © 1 1 (22b)
1 0 1




With the same elementary transformations needed to obtain
Eq. (22a) applied in reverse order, the inverse of B(D) is
obtained as

1, 1+D?, D
B'(D) =|1, D2 1+D (23)
I, 1+D?* 1+D

Also from Egs. (22b) and (9), one observes

Hence, the solution of the syndrome equation, Eq. (14), for
this example is, by Eq. (15),

e = [el,ez,e3
0 1 1
t[1+D,1+D* 1+D+D*] +[s ,s,]
1 0 1
(24

where ¢ € F[D] and. the syndrome s = [s,, s,] is computed
from Eqs. (13), (12), and (23) by
T
1+ D2:|
1+D

Thus, by Egs. (24) and (25), the two components of the syn-
drome are

§ = [sl,sz] = zHT =

1+D?, D2,
[21)22323

D, 1+D,

(25)

%
It

(1+D?)z, +D’z, +(1 +D?)z,

(26)

N

, = Dz +(1+D)z, +(1 + D),

and the three components of the solution of the syndrome
equation are

e, = (L+D)+s,

e, = (1 +D2)t+s1

e, = (1+D+D*)+s +s, @n
For this example, let the input sequence be
x=[110 0 1] (28a)

corresponding to its D-transform,

x = 1+D+D* (28b)

By Egs. (3) and (21), the transmitted codeword is

y = ,y,p;] = [(1+D),(1+ D%, (1+D+D% )]
| (29)

The encoded transmission is obtained by substituting
Eq. (28b) into Eq. (29) with the following calculations:

x: 11001 x: 1
Dx: 11001 D?%x:

1001
11001

y1:101111 y2:1111101

and
x: 11001
Dx: 11001
D%x: 11001
Y0 1001111
- Hence,

y=[111]+[010]D+[1 1 0]D?
+[0 1 1]D3+{1 1 1]D*+[1 0 1]D5

+[0 1 1]D® (30a)

is the D-transform of the encoded sequence

y=[111010110011,111,101,01 1]
(30b)

Note that there is a one-to-one correspondence between
sequences and their D-transforms. The final encoded sequence
is obtained by multiplexing sequences y,, y,, and y,. This
example of encoding illustrates the point that a D-transform x
operated on by D¥, ie., D¥x, can be used interchangeably
with sequence x, shifted right & times.

The circuit diagram for the (3, 1) CC encoder in Eq. (29) is
shown in Fig. 1. This circuit is a linear finite-state machine,
where the states of the machine are the four binary states of
register (R, R,). The state diagram of this machine is given in
Fig. 2, where a dashed line corresponds to the input x = 1 and
a bold line corresponds to the input x = 0, Finally, Fig. 3isa
graph of all possible inputs, next-state nodes, and outputs of
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this state diagram as a function of discrete time. This is the
trellis diagram of the (3, 1) CC encoder where the initial state
is (0 0).

Let the received D-transform of code be after transmission
of y in Eq. (30a),

z=[z,,2,,2,] = [110]+[110]D+[l1 0] D2
+[111]D%+[0 1 1]D*
+[1 0 1]D5+[0 0 1]D® (31a)
so that

z,=[1111010], 2z, =[1111100]

(31b)
and

2, =[0001111]

, (31b)

The syndrome s = [s,, 5,] for this received convolutional
code is given in Eq, (26). Using Eq. (31b) in Eq. (26) yields

z: 1111010

Dz : 1111010
D?z,: 1111100
23:0001111

D%z, 0001111

s=[111011101]

Dzlz'1111010
22:1111100
Dz2: 1111100
23:0001111
Dz_: 0001111

s = [111011110]

Hence, the D-transform of syndrome is

s = [s;,8,] = [1-1]+[1 1]D+[1 11Dp% +[1 i]D“
+[1 1]D% + [1 1]1D® + [0 1]D7

+[1 0]D® (32a)
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or, as a sequence, the syndrome is

s=1[11,11,11,00,11,11,11,01,10]
(32b)

The syndrome s(D) for this example is given above, in
Eq. (32). Given s(D), an error trellis or tree can now be con-
structed from the solution in Eq. (27) of the syndrome equa-
tion, Eq. (32). The error trellis for the solution, Eq. (27), of
the syndrome equation is shown in Fig. 4, where s = [s|, 5,] is
the syndrome sequence found in Eq. (32). By Eq. (27) and
Fig. 4, the error trellis is constructed exactly like the trellis
for the encoder in Fig. 3, except that input is #(D) instead of
message x(D) and the output is the code tG plus a correction
Jactor,

SB, = [s

1 590 81 18,1

instead of the code only.

To illustrate how [e,, e,, e;] is computed at each branch
of the trellis, suppose one is at node or state » = 10 at time 1
and let ¢ = 0. The output at this branch of the code trellis in
Fig, 3 is [1 0 1]. The syndrome at this branch is [s,, 5,] =
[1 1], so that the cortection factor is

[Sz’ S0 8, +s2] =11 0]
Hence, the output of the error trellis at this branch is
le,, e, 51 = {10 1]+[110] =001 1]

All other outputs of the error trellis are’computed in precisely
the same manner.

The error trellis in Fig. 4 will be used next to demonstrate
sequential syndrome decoding using the stack algorithm, The
metric used for this purpose is the modification of the Fano
metric developed in Appendix A. Let P(e,-j) = Prob[E, = eij]
and P(Z,.j) = Prob [Zl-j = zij] be, respectively, the probability
that E, the bit of the i-th coordinate of the error sequence
e at time j, equals e; (0 or 1) and the probability that Z,,
the bit of the i-th coordinate of the received sequence z at
time j, equals z; (0 or 1). By Eq. (A-16), the Fano metric
for some receivedl sequence of an (n, k) CC of depth L is

L n
bp = EEW,-;)

(33)
=1 f=1
where
P(el.l)
7\(62./) = 10g2m -R (34)
if




is the incremental change in the Fano metric at time stage i
and coordinate j. The rate for this example in Eq. (34) is one-
third. Also, let P(e=1)=0.1 and P(e =0) =0.9. Since

Plz,) = Pyl = 0P, = 0)+P(z,lu, = DP(, = 0)

)

for z;; = (0, 1), Eq. (34) becomes A(e;) =1og,(2 X 0.9) - 1/3 =
052 if e = 0 and Mey) =1log,(2 X 0.1)-1/3=2.65if e;; = 1.
For simplicity, this increment of the Fano metric is often
scaled so that its values are approximately integers. For the
present case, if o(e;;) = A(€)/0.52 then approximately

o(el.j) =1 if ey =0

-5 if

Lt
It

e; =1 (35)
is the scaled version of the modification of Fano’s metric for
this example,

The stack algorithm for sequential syndrome decoding
assumes that paths in the error trellis with their associated
metrics are stored in a stack. The entries in the stack are
ordered by the Fano metric. The path with the largest metric
is placed on top and all other paths are listed in the order of
decreasing metric. In detail, the stack algorithm for sequential
syndrome decoding has the following steps:

(1) Load stack with starting node or state of error trellis or
tree; the starting metric is zero.

(2) Compute metric of successors of path in the top of the
stack.

(3) Delete path in the top of the stack.

(4) Insert the new paths in the stack, and resort paths in
the stack in the order of decreasing metric.

(5) If the path at the top of stack ends at a terminating
node, stop; otherwise, return to Step 2, above.

Next, the stack algorithm is illustrated below for the error
trellis in Fig. 4.

In the following example of sequential syndrome decoding
using the stack algorithm, each entry of a stack contains three
times: a partial path in the error trellis, the path metric, and
the Hamming weight of path. With this stack structure, the
steps of the stack algorithm for the error trellis in Fig. 4 and
the metric in Eq, (35) appear as follows:

Step 1 Step 2 Step 3
1.(-3) () 11(-06)@ 110(¢3)(@
0(-9@ 0(-9@ 0 (-9 (2
10(-12) 3 1 0 (-12) (3)
11121 ()
Step 4 Step 5
1101(¢-56)@®3 11011(-9)(®)
0(-9 () 0(-9 (2
10 (-12) (3 10 (-12) (3)
1100 (12) &) 1100(12) 4
111 (21) (5 11010 (-15) (6)
111 (21) (5
Step 6 Step 7
110110(-6)@ 1101101 (-9 (5
0(-9@ 0(-9®
10(-12) 3 10 ¢-12) (3)
1100 (12) 4) 110012y 4 -
11010 (-15) (6) 110110.0((15) (6)
111 DG 11010 (-15 (6)
11011124 (D 11121
110111(24) (7
Step 8
11011010¢(6)(®5)
0(-9) ()
10 (-12) (3)
1100(-12) 4
1101100 (-15) (6)
11010 (-15) (6)
111 (21) (5
11011011 (-24)(8
110111 (24) ()
Step 9
110110100 ¢(-3)()
0(-9) ()
10 (-12) (3)
1100 (-12) 4
1101100 (15 (6)
1101015 (6)
11011010121 (®
111 (21) (5
11011011 (-24) (8
110111 ¢24) (D

The above stack algorithm shows that the best estimate of
path ¢ is :

T=[110110100] (36)
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The error sequence along this path is the estimate
€=[001,100,000,100,
100000,010,000,000] 37)
If € were added to sequence z in Eq. (31a), the result would be
the original coded sequence y in Eq. (30). However, it is more
efficient to recover an estimate X of the original message by

using Eq. (20).

The right inverse of the generating matrix for the example
in Eq. (21) is, by Egs. (22), (23), and (17)

1, 1+D* D 1 1
G =11, D2, 1+D}lo|=l1] (38
1, 1+D? 1+DJ LO 1

Hence, the estimate X of the original message is, by Eq. (20),

for the example
1 ~
X=[z,,2,2,]| 1 |+%
1
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=z, tz, vz, t¢ (39)

where 7 is the message correction factor obtained from
Eq. (36) and the sequential syndrome decoding algorithm is
developed below,

A substitution of Eqs. (31) and (36) into Eq. (39) yields
the computation of x as follows:

z: 1111010
z,: 1111100
z,: 0001111
£ 110110100

x=[11001000 0]
Hence,
=1+D+D* (4oj
is the estimate of the original message x. Since this agrees with

Eq. (28), the sequential syndrome decoding algorithm cor-
rectly decoded z as given in Eq. (31).




7@% 0 y,(D) = (1 +D) X (D)

3

x(D)o-4->| D J——l D yz(D)=(1+Dz)><(D)
&

Ry

® ' 0 yD) = (1 +D +D?) x (0)

Flg. 1. Encoder circuit for (3, 1) convolutional code

000

Fig. 2. State diagram for (3, 1) convolutional
code (dashed lines correspond to x = 1; solid
lines correspond to x = 0)

1 —

TIME —» 0 1 2 3 4 5 6

Fig. 3. Trellls diagram for encoder (3, 1) convolutional code (dashed lines
correspond to x = 1; solid lines correspond to x = 0)
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Fig. 4. Error trellis of e = [e,, e,, e;] as a function of {, state (Dt, D), syndrome s, and stage k.
Estimates of error sequence e and path t are shown below the trellis

Yg P(0I0) = PROB [e;, =0} H

\
=}

P(0[1) = PROB [eii =1}

POIT) = PROB fe;; = 0]

Fig. 5. Relationship of transition and error probabilities



Appendix A

The Modified Fano Metric for Sequential Syndrome Decoding
of Binary Convolutional Codes

In Section II, the general technique is developed for find-
ing all solutions of the syndrome equation of all noncata-
strophic (#, k) CCs. In.general, these solutions can be graphed
on an error tree in precisely the same manner that these solu-
tions were shown to graph on a trellis diagram. In fact, the
trellis is just another way of representing the graph of a linear
tree and vice versa.

The problem of a sequential syndrome decoding algorithm
is to find, sequentially, at some desired tree depth L, the path
or error sequence that has minimum Hamming weight. At any
stage of such a sequential syndrome decoding algorithm, one
must utilize a weight or metric to order the different partial
paths the algorithm has already generated and considered in
the error tree. In this appendix, the standard Fano metric is
modified into a metric suitable for the syndrome decoding of
convolutional codes.

To find the Fano metric, consider the code tree of a binary
(n, k) CC of depth L. The transmitted code y; is a code of L
blocks of # binary bits of form

Y, T (y“:ylza'",y1nxy21:y22>"',y2n,'":‘
yLl’yL2’. : "yLn)
wherex,-j=00r 1fori=1,2,---,Landj=1,2, - ,nIf

such a code is sent through a binary symmetric channel, the
received code z, is of the same form as the transmitted code,
namely,

Z ) 22}1’ Y .

L= @2y 2 By Ty

z (A-1)

2y 2 e E )

An algorithm of a sequential decoder examines a set S, of,
say M, subsequences or subcodes of the code tree of depth L.
This set of subcodes has the form

where the subsequence u,, of the (r, k). CC code tree is of the
form
U = (uu' Upgs "ol U Uggs 7 sty 7T s

u u LU (A-2
k1 k20 kmn)- )

wherem=1,2, -, M.

.The problem of the decoder is to find the sequence u,, in
the set S, that is most likely to compare with the received
codeword z;. To accomplish this comparison process with
probability methods, one imagines, following Massey (Ref. 7),
that each ene of the partial codes U, in Sy, of depth %,,,, for
1<k, <L, is randomly extended to a depth L in the code
tree. Such an extension is called a random tail. Explicitly, the
extended codes for ug, have the form

V=, t,)
o ~ L ~ ~ .
= (yllrylz’ 7y1nry21’y22’ >

Yow 5 FLr Vi Vi)
where the “tail”’ is the binary vector,

I = (tll’ PYRRAEE FIVE PP PTRRE

t- ul,t t -.-1-

- - ’ -
L-k,.1'"L km,2 *"L km,n)

(A3)

2n’ )

‘chosen randomly from the code tree. Let ¢,, be chosen inde-

pendently of #,, and y;, in accordance with some arbitrary
probability distribution P(z,,).

The joint probability of transmitting u,,, augmenting u,,
with the random tail ¢,,,, and receiving y; is

P@,,2,) = Plu,,t,,z2,)

[

P(u,)P(t,, |um)P(zL|um, t,)

= P(u,,) P(t,,) Pz, |7)) (A-4)

The last equality follows from the independence of ¢,, and
u,,. Assume that the channel is a discrete memoryless channel
(DMC) (Ref. 8). Then,

n L
Pe,19) =111 Pe,Ppyp

J=1 =1
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1—1 I_[ P(z”|uu) n

( ok i | tsz;)

j=1] i=1
(A-5)
But, the independence of y; and t,, implies
P(z2+km'j|t2i) - P(ZMM.) (A6)

Hence, substituting Eqs. (B-5) and (B-7) into Eq. (4) yields

Pyt 2,) = P, ) PG, ]

/=1

km L-—-km
s o
(A7)

The marginal joint distribution of u,,, and y, is obtained by
summing P(u,,, t,, z;) in Eq. (A-7) over all possible random
tails z,,,. Since

> PG, =
tm

this distribution is

Pu,,z,) = Pw,)] |

j=1.

i)

(A-8)

where P(ui/) is the probability of bit y; at the output of the
binary symmetric channel.

To compute the probability P(u,,,) that the partial code u,,
in set Sy, was transmitted, assume that the information sym-
bols are independent and equally likely, i.e., the probability an
information symbol is one equals P = 1/2. By Eq. (A-2), the
number of information symbols used to generate the partial
codeword u,,, is

(A-9)
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since the dimensionless code rate is R = k/n. Let i, be the
number of ones in the information sequence that generated

the partial codeword u,,,. Then, -
P(um) - plm qu—lm - pim ankm—z
-R k
=2 "M (A-10)

By Egs. (A-8) and (A- 10) and the rules for conditional
probability,

n km
T’“""’"ﬂ[ﬂ P(zu,) n < ok, )]

J=1
P(z,)

P(u,lz,) =

(A-11)

is the conditional probability that the partial codeword u,,
was transmitted, given that y, was received. The minimum
error decoding (MED) principle (Ref. 8) says to choose that
path u,, in set S,, that maximizes P(u,, |z, ) in Eq. (A-11).
Since P(y, ) is constant over this maximization, this is equiva-
lent to the choice m in set {1, 2, - - - , M}, which maximizes

m km L_km
Ymy = 2 m g [1:1[ Plz;|uy) Bl P(Zsz+km'f):|

(A-12)
Finally, since the term

n L

P(Zii)
i=1j=1

is a constant with respect to the maximization of y(m), this
maximization is equivalent to the maximization with respect
to m of the ratio

n L
vem) [T]T1Peyp

j=1 i=1

¢(m) =

or its logarithm,

km P(zij l uii)
pg(m) = E IOgT(zij)_— -R

=1 j=1

3

(A-13)

up(m) in Eq. (A-13) is the standard Fano metric for the
sequential decoding of an (n, %) CC.




The above derivation «of the Fano metric is more directly
applicable to (n, k) CC than the classical proof due to Massey
(Ref. 7). It is also somewhat more precise than the recent deri-
vation given by Clark and Cain (Ref. 9), upon which the pres-
ent derivation is based.

As in Eq. (A 2), let uy; denote a particular bit of some sub-
sequence u,, in S,,; of poss1ble transmitted messages in the
code tree of an (n, k) CC, and let z;; denote the corresponding
received bit. Then, z,; is related to bit u; by

is the difference, or error, between the possible transmitted bit
u;; and the received bit z,,, and addition is modulo 2 or addi-
tion of the field F, = {0, 1} of two elements.

But, by the Shannon transition diagram in Fig. 5, the con-
ditional probabilities P(z,.,'u,j) are in all cases given by

P(Zi/luij) = Prob [e,./ =u +z”] EP(ei’.) (A-15)

A substitution of Eq. (A-15) into Eq. (A-13) yields

oz = uytey
- - wp(m) = Z E log P (A-16)
where, solving for e =1 j=1
e; = zytuy (A-14) as the deéired modification of the Fano metric.
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